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1. Introduction 

Land mines are a direct threat on the battlefield and remain a significant problem for civilians in 
areas of current and former conflict.  Some 15,000–20,000 people in more than 90 countries fall 
victim to land mines each year (1, 2).  These explosive hazards cannot be efficiently removed 
using current humanitarian demining approaches (3).  At present, land mine detection is 
generally conducted in a manner similar to that employed half a century ago.  A handheld metal 
detector is used to identify a subsurface anomaly that may be a buried land mine.  In 
humanitarian demining, meter-wide lanes are searched for anomalies by swinging a metal 
detector back and forth just above the ground surface.  When the metal detector receives a signal, 
the suspected area is probed to determine whether or not it contains a buried land mine.  This is 
also the procedure used for military postoperational land mine clearance, although the new 
AN/PSS14 handheld mine detection system that combines a metal detector with a ground-
penetrating radar was deployed for the first time in 2003 on a limited basis by U.S. forces in 
Afghanistan.  To investigate the anomaly detected by a land mine sensor system, a human 
deminer uses a thin, tapered prodding device to determine if the anomaly is a solid object and, if 
so, whether or not it is a land mine.  This is a very tedious and sometimes uncertain approach.  
Thus, there is a particular need for a deminer’s soil prodder that will differentiate between buried 
antipersonnel mines and other subsurface objects (4). 

 

2. LIBS for Land Mine Discrimination 

Laser-induced breakdown spectroscopy (LIBS) is a simple spark spectrochemical technique that 
uses a pulsed laser to create the spark.  The technique has many attributes that make it an 
attractive tool for chemical analysis, particularly its potential as a field-portable sensor for 
geochemical analysis (5, 6).  LIBS is relatively simple and straightforward, so skilled analysts 
are not required.  Little to no sample preparation is required, which eliminates the possibility of 
sample adulteration through improper handling or storage, or cross-contamination during sample 
preparation.  LIBS provides a real-time response and a simultaneous detection and analysis of all 
elements.  The laser plasma is formed over a very limited spatial area so that only a small sample 
(pg-ng) is engaged in each laser microplasma event.  All instrument components can be made 
small and rugged for field use, and LIBS sensors can be operated either as a point sensor or in a 
standoff detection mode.
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Broadband LIBS, which captures the spectral region from 200 to 940 nm (in which all elements 
emit light), is a sensor technology capable of discriminating among different types of plastic land 
mine casings through a statistical approach that compares the LIBS spectrum acquired for an 
unknown sample against a spectral library (7–11).  The discrimination of different explosive and 
energetic materials using LIBS has also been demonstrated (12–18).  Thus, LIBS has the 
potential to be a single-sensor technology that can detect and discriminate both the casing of a 
land mine and its explosive contents.  The recent development of man-portable/backpack LIBS 
sensor systems (7, 9–11, 16, 19, 20) that utilize small, rugged lasers (which are very suited for 
field use) has opened up the possibility for LIBS to be used as a confirmatory sensor technology 
for land mine detection. 

More than a dozen different types of antipersonnel and antitank mines and a broad range of 
natural and anthropogenic materials (“clutter”) of the kind likely found within the soil of a 
conflict area or former conflict area were analyzed previously in our lab using a LIBS system (9, 
11).  A spectral library was created, and a simple linear correlation was used to classify the LIBS 
spectra.  The results of that study are summarized in table 1.  Although LIBS was able to 
distinguish the mines and clutter objects very well (94.6% correct mine identification), it was not 
able to identify specific mine types (80.4% correct identification).  The goal of this study was to 
apply recent advances in the chemometric analysis of LIBS data (16) to the problem of land mine 
detection to determine if specific mine types could be identified with greater accuracy. 

Table 1.  Initial land mine casing results (9). 

Target  
(No. of Samples) 

Correct Mine/No-Mine ID 
(%) 

Correct Sample ID 
(%) 

Land mine casings (56) 94.6 80.4 
Plastics (24) 83.3 79.2 

Wood and cardboard (5) 100 100 
Rocks (5) 100 100 
Metal (10) 100 80.0 
Total (100) 93.0 82.0 

 
For this study, 3000 single-shot spectra of 41 inert mine casings (see table 2 for description of 
mines) and 7 mine simulants (1 wood, 2 black plastic, and 4 nylon) were acquired with a custom  
laboratory LIBS setup designed to accommodate large antitank mines (see figure 1).  This U.S. 
Army Research Laboratory (ARL) system consisted of a Big Sky CFR400 laser (1064 nm,  
90–150 mJ, 10-ns pulse) and an Ocean Optics LIBS2500+ broadband spectrometer that recorded 
LIBS plasma light emission over the spectral range from 200 to 940 nm.  The light from the 
laser-induced plasma was collected and focused with a parabolic mirror onto the seven-fiber 
optic bundle delivering the light to the spectrometer.  For each land mine casing and simulant, 1 
cleaning shot was taken followed by 25 successive shots in two different locations (for a total of 
50 single-shot spectra per sample).  Single-shot spectra of the land mines are shown in figures 2 
and 3, and spectra of the mine simulants are shown in figure 4.  The strongest emission lines 
observed in the spectra have been identified and labeled.  Atomic emission from the atmosphere 
contributes to the oxygen and nitrogen lines in all the spectra.
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Table 2.  Description of land mines. 

Mine Type Country of Origin Quantity AP/AT Photoa 

PMA-1A Yugoslavia 14 AP 

M14 USA 9 AP 

 

PMN-1 b Russia 6 AP 

 

TS-50 Italy 2 AP 

 

VS-MK2b Italy 2 AP 

 

TNG-M80 USA 1 AT 

VS-HCT2 Italy 1 AT 

TMA-3 Yugoslavia 1 AT 

TM-62P3 Russia 1 AT 

 
POM Unknown 1 AT Not available 

Note:  Antipersonnel (AP) and antitank (AT) land mines were provided by Aaron LaPointe (U.S. Army Night Vision  
and Electronic Sensors Directorate). 

aPhotos obtained from ORDATA online (21). 
bSpectra of both the rubber top and the plastic bottom of the mine casing were acquired. 
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Figure 1.  Photo of custom LIBS setup for land mine identification. 

 
 

 

Figure 2.  Single-shot LIBS spectra of antipersonnel land mine casings.
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Figure 3.  Single-shot LIBS spectra of antitank land mine casings. 

 
 

 

Figure 4.  Single-shot LIBS spectra of land mine simulants. 
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As shown in this study (figures 2 and 3) and previous work (7–11), broadband LIBS analysis has 
demonstrated observable differences in land mine casings composition.  To extend the LIBS 
approach to the problem of land mines at an operational level, the identification issue must be 
addressed.  The big advantage of broadband LIBS, i.e., capturing the entire portion of the LIBS 
spectrum from 200 to 940 nm, is based on the idea that every material yields a unique LIBS 
spectrum.  This being the case, a LIBS spectrum should provide a “fingerprint” of the material 
analyzed, and LIBS spectra of different materials should be distinguishable one from another by 
chemometric analysis. 

Principal components analysis (PCA) is a chemometric technique that finds linear combinations 
of variables, i.e., principal components (PCs), which describe major trends in the data.  PCA 
enables data compression and information extraction, and has previously been applied to LIBS 
spectra of biological and chemical warfare agent simulants (22, 23) and explosive residue 
samples (13–16) at ARL.  Although PCA is not a classification technique, it provides a useful 
tool for identifying whether samples are the same or different and what variables are responsible 
for the differences.  Twenty single-shot broadband spectra for each of 36 land mines (including 
spectra from the top and bottom of mines with separate cases and caps) and 5 mine simulants 
were used to build a PCA model.  Spectral preprocessing involved normalization followed by 
mean-centering.  The PCA scores are linear combinations of the original variables and contain 
information on how the samples relate to each other.  The loadings contain information on how 
the variables (i.e., spectral wavelengths) relate to each other; mathematically they are the 
eigenvectors of the covariance matrix describing the variables.  By considering the scores and 
loadings simultaneously, the variables responsible for the differences between samples can be 
identified. 

The loadings for PC1 (describing 60.58% of the variance in the data set) show that the most 
important peaks in the model correspond primarily to the C, CN, C2, O, N, and Ca content of the 
land mines (figure 5).  Because most of the land mines contain similar amounts of C, H, N, O, 
and Ca, the PCA model is unable to distinguish between the types of land mines and simulants 
(figure 6).  When different types of land mines are considered individually, however, some 
interesting patterns emerge.  For example, spectra of six PMN-1 mines were acquired.  A plot of 
scores for the PMN-1 mines (figure 7) shows that mine nos. 16 and 17 are grouped together, 
separate from the other four PMN-1 mines (sample nos. 18–21).  A comparison of the LIBS 
spectra (figure 8) reveals that mine no. 16 (and 17) has a stronger LIBS signal than mine no. 18 
(and 19–21).  In addition, spectra of both the rubber top of the mine and the bottom plastic case 
show distinct differences that are captured by the PCA model (figure 7).  The rubber-like top 
parts of the PMN-1 mines have more Ca, CaO, and CaOH emission lines than the bottom 
(plastic-like) parts.  Comparison of the scores plot (figure 7) with the loadings plot for PC1 vs. 
PC2 (figure 9) reveals that the separation between the top and bottom portions of the mine in the 
PCA scores plot is due to the higher Ca content in the top material, and the separation between 
mine nos. 16 and 17 and 18–21 likely reflects differences in the plasma temperature (since the 
separation is caused by the relative intensities of Ca atomic and ionic emission lines).
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Figure 5.  Loadings plot for PC1 for the PCA model built using 1000 LIBS spectra 
from 36 different land mines and 5 mine simulants. 

 
 

 

Figure 6.  Scores plot of PC1 vs. PC2 for the PCA model built using 1000 LIBS spectra from 
36 different land mines and 5 mine simulants.
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Figure 7.  Scores plot of PC1 vs. PC2 for the PCA model built using 220 LIBS 
spectra from 6 different PMN-1 land mines (top and bottom).  The cap 
for mine no. 19 was not available. 

 
 

 

Figure 8.  LIBS spectra of the top cap and bottom casing of two PMN-1 land mines.
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Figure 9.  Loadings plot for PC1 vs. PC2 (PCA model based on the 6 PMN-1 mines).  
Comparison with the scores plot in figure 7 shows which spectral features 
contribute to the separation between the PMN-1 mines. 

Partial least-squares discriminant analysis (PLS-DA) is a supervised, multivariate least-squares 
analysis technique that has shown to be extremely useful for hazardous materials classification 
with LIBS (14–17).  In PLS-DA, the predictor variables (called “latent variables” [LVs]) are 
generated while simultaneously considering both intraclass and interclass variance.  This is in 
contrast to PCA, which only considers the total variance of the entire data set.  By maximizing 
the differences between sample classes (i.e., mine types), more subtle differences in the LIBS 
spectra are described by the PLS-DA model.  A PLS-DA model was built using 17 sample 
classes consisting of 20 single-shot spectra each of 12 PMA-1A mines, 7 M14 mines, 6 PMN-1 
cases, 5 PMN-1 caps, 2 VS-MK2 cases, 2 VS-MK2 caps, 2 TS-50 cases, 2 TS-50 caps, 1 POM-
AT mine, 1 TNG-M80, 1 VS-HCT 2, 1 VS 1.6, 1 TMA-3, 1 TM-62P3, 1 wood mine simulant, 1 
black plastic mine simulant, and 4 white nylon mine simulants.  Twenty latent variables were 
chosen to describe the model spectra based on cross-validation (contiguous block method). 

Because the model uses 20 LVs for optimal class discrimination, interpreting the loadings for 
each LV (in order to determine which wavelengths in the model are most useful for class 
separation) is complicated.  The variable importance in projection (VIP) scores for each class are 
essentially a weighting of the regression vector and show which variables are important for 
separation between the classes in the model (24, 25).  A variable with a VIP score close to or >1 
can be considered important in a given model.  As figure 10 shows, the VIP scores (which 
combine the LVs that contribute to each class) reflect the contributions of minor impurities to the 
LIBS spectra of the mines.  Instead of trying to separate the different mines on the basis of 
common emission lines C, CN, C2, and Ca (see figure 5), the PLS-DA model is able to 
discriminate the mines based on differences in their trace metal content (Cu, Ba, Ti, Cs, Mg, 
etc.).
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Figure 10.  VIP scores for 3 of the classes in the 17-class PLS-DA model:  (a) TNG-M80, (b) TMA-3, and (c) 
VS-HCT 2.   

 
For each target class in the model, the likelihood that a given sample spectrum belongs to that 
class is predicted based on a value of 0 to 1.  A value closer to 0 indicates that the sample is not 
in the modeled class, while a value of one indicates that the sample is in the modeled class.  A 
threshold between 0 and 1 (above which a sample is considered in the class) is automatically 
calculated by the software using Bayesian statistics in order to minimize the number of false 
positives and false negatives (24).  A validation set consisting of 30 additional spectra from each 
mine/simulant in the model was tested against the model.  Based on the calculated thresholds for 
each sample class, 1485 out of 1500 test spectra fell above the threshold in the appropriate class, 
resulting in 99.0% correct classification for the validation set (table 3).  The misclassification 
rate for the validation set was 1.8%.  Of the misidentifications, 2.6% resulted in a mine simulant 
being identified as a mine (false positives), and 1.6% resulted in a mine being identified as a 
simulant (false negatives).  The majority of the misidentifications (95.8%) were between mine 
types. 
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Table 3.  PLS-DA results for validation test set consisting of 1500 additional LIBS spectra of the mines and 
simulants included in the model. 

Test Spectra  
(No.) 

 Model Classes  
(No. Above Bayesian Threshold) 

PMA-1A (360) 352 1 0 0 0 2 3 3 15 2 0 15 10 14 0 6 11 

M14 (210) 0 209 0 0 0 0 2 54 0 0 0 13 0 0 3 12 0 

PMN-1 case (180) 2 0 180 0 1 0 1 0 4 5 3 2 0 1 0 1 0 

PMN-1 cap (150) 0 0 0 150 0 0 0 0 0 0 0 1 0 0 0 0 0 

VS-MK2 case (60) 0 0 0 0 59 0 8 1 0 0 0 3 0 0 0 15 0 

VS-MK2 cap (60) 0 0 1 0 0 60 0 0 0 0 0 0 0 0 0 0 0 

TS-50 case (60) 0 0 0 0 21 0 59 3 0 0 0 0 0 0 1 1 0 

TS-50 cap (60) 0 60 0 0 0 0 0 60 0 0 0 4 0 0 0 1 0 

POM AT (30) 1 0 0 0 0 2 0 0 28 1 0 0 0 0 0 0 11 

TNG-M80 (30) 5 0 0 0 0 0 0 0 1 30 0 0 0 0 0 0 0 

VS-HCT 2 (30) 0 0 4 0 3 0 0 0 2 0 30 0 0 0 0 0 0 

VS 1.6 (30) 0 0 0 1 0 0 0 1 0 0 0 30 0 0 0 0 0 

TMA-3 (30) 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 1 0 

TM-62P3 (30) 22 0 0 0 0 0 0 0 0 0 0 4 3 30 0 0 2 

Wood simulant (30) 0 5 0 0 0 0 0 0 0 0 0 14 0 0 29 0 0 

Black plastic simulant (30) 3 3 0 0 13 0 0 0 0 0 0 0 0 0 0 29 0 

White nylon simulant (120) 0 0 0 0 0 0 0 0 16 1 0 7 0 0 0 0 120

 
A second test set of 50 spectra each for 6 mines and 2 simulants not included in the model, as 
well as spectra of the POM-AT mine acquired at a lower laser energy (90 mJ compared to the 
150 mJ used for the model spectra), were tested against the PLS-DA model.  When the Bayesian 
threshold was used to determine classification, the test set resulted in 98.6% correct classification 
and 4.6% misclassification.  Of the misclassified spectra, 8.6% represented false positives and 
0.1% represented false negatives.  When the Bayesian threshold was used as a criterion for class 
membership, each single-shot spectrum could classify with more than one sample class (since the 
sample may lie above the threshold for more than one class).  The percentage of correct 
classifications therefore refers to the diagonal elements of the confusion matrix (test sample class 
vs. model class), while the percentage misclassification refers to the off-diagonal elements (see 
table 3).  For the second test set, an alternate method for determining class membership was 
applied.  If the predicted probability for a test sample is >50% for a particular class, the sample is 
considered part of that class; however, if a test sample does not have a predicted probability 
>50% for any class in the model (or for more than one class), it is considered unclassified.  When 
only the Bayesian threshold is used, the decision to classify a test sample with a particular model 
class is much less restrictive (resulting in more true positives as well as more false positives).  
The second method for class determination allows for the possibility that the sample does not 
match any of the classes in the model and prevents a sample from being grouped with more than 
one class.  The results from the classification of the second test set are shown in table 4.  The 
percentage of correct classification is now only 45.2% with 54.4% of the spectra unclassifiable; 
however, only 0.4% of the spectra are misclassified.  Despite the difficulty in classifying two
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M14 mines and the PMN-1 mine with their respective classes in the model, they were correctly 
identified as mines by the model 100% of the time.  Overall, 99.3% of the mines in the test set 
were correctly identified as mines (regardless of type), but 35 of the black mine simulant spectra 
and all 50 of the wood mine simulant spectra were incorrectly identified as mines.  Although the 
PLS-DA model includes 14 mine types, only three simulant types are included; increasing the 
number and type of clutter objects in the model will improve the predictive ability of the model 
to determine mine/no mine classification for sample types not included in the model. 

 
Table 4.  PLS-DA results for second test set of mines and simulants not included in the model. 

Sample No. Correct No. Misidentified No. Unclassified Mine/No Mine ID 
Three PMA-1A mines 141/150 0/150 9/140 149/150 

Two M14 mines 8/100 1/100 91/100 100/100 
One PMN-1 minea 24/100 0/100 76/100 100/100 

POM mine (low energy) 38/50 0/50 12/50 48/50 
Black mine simulant 15/50 0/50 35/50 15/50 
Wood mine simulant 0/50 1/50 49/50 0/50 

aSpectra of both the casing and cap were acquired. 

 

3. LIBS as a Confirmatory Sensor for Demining 

An ideal land mine detector would detect and identify both the exterior casing and the contained 
explosive charge.  LIBS has demonstrated such a dual capability, with unique broadband spectra 
successfully acquired under laboratory conditions for explosive materials and both metal and 
plastic antipersonnel and antitank land mines.  With the recent progress made toward realizing 
man-portable LIBS, the concept of a LIBS demining probe for a confirmation land mine 
detection sensor now seems within reach.  The idea is a backpack-size system that would contain 
a minilaser in the handle of a deminer’s probe, with light delivered to and collected from the 
tapered tip of the probe and analysis made by touching the buried object.  Such a capability could 
also be deployed by a robot for unmanned land mine detection (19). 

The LIBS-based deminer’s probe would be similar in form and material composition to the 
current generation of prodders in use within the humanitarian demining community, i.e., having 
a thin, ~30- to 40-cm-long end-tapered probe that joins a barrel-style handle.  The probe would 
also allow for the delivery of an inert gas (e.g., He or Ar) to the tip of the probe, with the tapered 
tip of the probe designed to protect the ends of the optical fiber from both damage and soil 
obstruction during insertion.  The probe handle would contain a pulsed laser capable of 
delivering >30-mJ pulse power.  The laser signal would be directed through a set of optics (also
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contained in the probe handle) to an optical fiber contained in the hollow probe that would 
transmit both the laser signal and the returned plasma light to the LIBS-spectrometer system that 
would be contained either in a backpack worn by the user or in a “pelican-type” case carried by 
the user.  An analysis could be made rapidly and reliably by touching the buried object.  Then, a 
laser spark would be created and a plasma generated on the surface of the object after 
preliminary “cleaning” shots to remove surface soil particles and expose a fresh material surface.  
The resultant plasma light would be captured by the fiber optic in the probe tip and transmitted 
through the fiber optic in the prodder and handle to the broadband spectrometer.  The broadband 
LIBS spectrum obtained would be background corrected by software in the onboard computer in 
real time and then compared with a spectral library of land mine casings, explosives, and 
common environmental clutter objects to determine if there was a positive correlation.  A 
spectral match with a reference spectrum in either the land mine casings or explosives library 
would be declared a positive response that required marking and excavation.  This specially 
designed LIBS system for land mine detection could be used as a confirmatory sensor for both 
humanitarian and military demining, but it also has the potential to be used in a variety of 
noncountermine applications (e.g., homeland security, forensic, environmental cleanup, 
geoscience, and bioscience applications) that would benefit from chemical analysis of an 
undisturbed substance in the field in real time. 
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